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Abstract 
This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized 

Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the 

no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is 

introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete 

Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear 

stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant 

pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for no – slip condition 

and no magnetic field, can be derived as special cases of our solutions. Furthermore, the effects of various 

parameters on the velocity distribution characteristics are analyzed and discussed in detail. Comparison between 

the two cases is also made. 

Keywords: Generalized Burgers’ fluid, Constant pressure gradient, Sinusoidal pressure gradient, Fox H- 

function.   

 

I. Introduction 
In recent years, the flow of non- Newton fluid has received much attention for their increasing industrial 

and technological applications, such as extrusion of polymer fluids, exotic lubricants, colloidal and suspension 

solutions food stuffs and many others. Because of the complicated behavior, there is no model which can alone 

describe the behavior of all non- Newtonian fluids. For this reason, several constitutive equations for all non- 

Newtonian fluid models have been proposed. Among them, rate type models have special importance and many 

researchers are using equations of motion of Maxwell and Oldroyd fluid flow [5, 9, 13, 16, 17]. Recently, a 

thermodynamic framework has been put into place to develop a rate type model known as Burgers’ model [8] 

which is used to describe the motion of the earth’s mantle. The Burgers’ model is the preferred model to 

describe the response of asphalt and asphalt concrete [5]. Many applications of this type of fluid can be found in 

[3, 6, 11, 14, 15, 18]. Fluids exhibiting boundary slip are important in technological applications, such as the 

polishing of artificial heart values, polymer melts often exhibit macroscopic wall slip that in general is governed 

by a non- linear and non- monotone relation between the slip velocity and the traction [4]. Ebaid [1] and Ali [10] 

studied the effect of magnetic field and slip condition on peristaltic transform. Khaleda [2] gives the exact 

solution for the slip effect on Stokes and Couette flows due to an oscillating wall. Liancun eta. [19] investigated 

effect of slip condition on MHD flow of a generalized Oldroyd- B fluid with fractional derivative. They used the 

fractional approach to write down the constitutive equations for a viscoelastic fluid. A closed form of the 

velocity distribution and shear stress are obtained in terms of Fox H- function by using the discrete Laplace 

transform of the sequential fractional derivative.  

No attempt has been made regarding the exact solutions for flows due to constant and sinusoidal pressure 

gradient of generalized Burgers’ fluid with fractional derivative and the non- slip condition is no longer valid. 

The exact solutions for velocity field and shear stress are obtained by using discrete Laplace transform and they 

are written in term of Fox H- function. Many cases are recovered from our solutions.      

 

II. Governing Equations 
The constitutive equations for an incompressible fractional Burger’s fluid given by 

SIT  p ,        AS )D
~

+(1=)D
~

D
~

+(1 t3

2

tt 21

                                                                                      (1) 

 where T  denoted the cauchy stress, Ip  is the indeterminate spherical stress, S is the extra stress tensor, 

T
LLA   is the first Rivlin- Ericksen tensor with the velocity gradient where VL  grad ,   is the dynamic 

viscosity of the fluid, 
1
  and 

3
  (<

1
 ) are the relaxation and retardation times, respectively, 

2
  is the new 
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material parameter of Burger’s fluid,   and   the fractional calculus parameters such that 10    and  

p

tD
~

the upper convected fractional derivative define by 
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tt DD                                                                                                                      (2) 
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in which 
tD  and 

tD  are the fractional differentiation operators of order  and   based on the Riemann- 

Liouville definition, defined as 

10,
)(

)(

)1(

1
)]([

0




  pd
t

f

dt

d

p
tfD

t

p

p

t 



                                                                                              (4) 

here (.)  denotes the Gamma function and 
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The model reduced to the generalized Oldroyd- B model when 02  and if, in addition to that, 1   

the ordinary Oldroyd- B model will be obtained. 

We consider the MHD flow of an incompressible generalized Burger’s fluid due to an infinite accelerating plate. 

For unidirectional flow, we assume that the velocity field and shear stress of the form  

),(,),( tytyu SSiV                                                                                                                                          (6) 

where u  is the velocity and i   is the unit vector in the x- direction .Substituting equation (6) into (1) and taking 

account of the initial condition  

0,0)0,(  yyS                                                                                                                                              (7) 

we obtain 

),()D+(1=S)DD+(1 yt3xy
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where 0SSSS zzyzyyxz   ,  yxxy SS  . Furthermore, it assumes that the conducting fluid is permeated by 

an imposed magnetic field ,0]B[0, 0B  which acts in the positive y- direction. In the low- magnetic Reynolds 

number approximation, the magnetic body force is represented as u2

0B , where   is the electrical conductivity 

of the fluid. Then in the present of a pressure gradient in the x- direction, the equation of motion yields the 

following scalar equation: 

u
yxdt

du
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0BS
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where   is the constant density of the fluid. Eliminating xyS between Eqs. (8) and (9), we obtain the following 

fractional differential equation   
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where 



v   is the kinematic viscosity and 



 2

0B
M   is the magnetic dimensionless number. 

 

III. Flow induced by a constant pressure gradient: 
Let us consider the flow problem of an incompressible generalized Burgers’ fluid over an infinite plate at 

0y  with fluid occupies the space 0y  and flowing under the action of a constant pressure gradient. Also, 

we assumed the existence of slip boundary between the velocity of fluid at the wall ),0( tu  and the speed of the 

wall, the relative velocity between ),0( tu  and the wall is assumed to be proportional to the shear rate at wall. 

Initially, the system is at rest and at time  0t  the fluid is suddenly set in motion due to a constant pressure 

gradient and by the existence of the slip boundary condition. Referring to Eq. (10), the corresponding fractional 

partial differential equation that described such flow takes the form 
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where 
dx

dp



1
A   is the constant pressure gradient 

The associated initial and boundary conditions are as follow  
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where a and b  are constants,   is the slip strength or slip coefficient. If 0 then the general assumed no-slip 

boundary condition is obtained. If   is finite, fluid slip occurs at the wall but its effect depends upon the length 

scale of the flow. 

Employing the non- dimensionless quantities 
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Eqs. (11- 14) in dimensionless form are: 
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where the dimensionless mark “  ” has been omitted for simplicity. 

Now applying Laplace transform principle [7] to Eq. (15) and taking into account the boundary condition (16), 

we find that  
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Subject to boundary conditions 
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where ),( syu is the image function of ),( tyu and s  is a transform parameter. Solving Eqs. (19)- (21), we get  
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The shear stress can be calculated from Eq. (8), taking Laplace transform of Eq. (8) and introducing Eq. (22), 

we get 
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where ),( sy  is the Laplace transform of 
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In order to avoid the burdensome calculations of residues and contour integrals, we will apply the discrete 

inverse Laplace transform to get the velocity and the shear stress fields. Now, writing Eq. (22) in series form as  
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Applying the discrete inverse Laplace transform to Eq. (24), we get 
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In terms of Fox H- function, Eq. (25) takes the simpler from: 
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where the property of the Fox H- function is  
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The solution Eq. (26) should satisfy the boundary condition Eq. (17). To see this, from Eq. (26) it is easy to 

obtain  
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Adopting the similar procedure in Eq. (23), we obtain the shear stress: 
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                           (27) 

Special Cases: 

1-  If 0  then the no- slip condition is obtained. In this special case Eqs. (26) and (27) are simplified 

to   
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2-  If  0  and 0M  then Eqs. (26) and (27) reduce to 
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which correspond to the flow of a generalized Burgers’ magnetic field effect. 

 

3- Making 02   and 0A in Eqs. (26) and (27) the solutions corresponds to slip effects of a 

generalized Oldroyd- B fluid in absence of pressure gradient can be recovered, as found  by Zheng … etc in 

[19]. 

 

4- If we set 02   , 0  and  0M  in Eqs. (26) and (27) the similar solutions for generalized 

Oldroyd- B fluid are recovered, as found by Hyder … etc in [12]. 

 

IV. Flow due to a sinusoidal pressure gradient: 
Let us consider the flow problem of generalized Burgers’ fluid bounded by an infinite plane wall at 0y , 

under the action of sinusoidal pressure gradient with the same initial and boundary conditions, Eqs. (16- 18).   

In this case the governing equation can be written as  
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                                         (28) 

where  )cos(
1
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00

wtp
dx
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  and 

0
p  is constant. The associated initial and boundary 

condition are as given in Eqs. (16- 18). 

Again, by similar procedure as in the previous case the velocity field is found in the form of   
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and, by using Eq. (8), the corresponding stress is found in the form of  
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Special Cases: 

1- If 0  then the no- slip condition is obtained. In this special case Eqs. (29) and (30) are simplified 

into  
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2- If  0  and 0M  then Eqs. (29) and (30) reduce to 
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which correspond to the flow of a generalized Burgers’ magnetic field effect. 

 

V. Numerical results and discussion: 
In this work, we have discussed the MHD flow of generalized Burger’s fluid due to accelerating plate with 

slip effects. The exact solutions for the velocity field u  and the stress  in terms of the Fox H-function are 

obtained by using the discrete Laplace transform. Moreover, some figures are plotted to show the behavior of 

various parameters involved in the expressions of velocity u .  

A comparison between non- slip effect (Panel a) and slip effect (Panel b) is also made graphically. Figs. 1- 

7 are prepared for flow due to constant pressure gradient where as Figs. 8- 14 for flow due to sinusoidal pressure 

gradient.   

Fig. 1 shows the variation of the non- integer fractional parameter  and the slip coefficient . The velocity 

is increasing with the increase of  and  . 

 Fig. 2 is depicted to show the changes of the velocity with fractional parameter  . In the case of non- slip 

condition is fullfield, the influence of   is same as that of  . However, it is observed that as   increasing 

there is a variation in velocity value a bout some value of   which is greater than 0.4.  

Figs. 3 and 4 provide the graphically illustrations for the effects of relaxation and retardation parameters 1  and 

3  on the velocity fields. The velocity is increasing with the increased the 1  and 3  for both cases, the slip and 

no- slip condition.  

The effect of 2  is illustrated in Fig. 5 which shows that 2  has quite the opposite effect to that of 1  and 

3  for both cases ( 0 & 0 ). 

Fig. 6 demonstrates the influence of the magnetic field M. It is noticed for both cases 0 & 0 , when 

M < 2 there is increasing in the velocity field, however when M > 2 show an opposite effect on the velocity. 

In Fig. 7, the variations of the slip coefficient   on velocity with the magnetic field parameter. The velocity is 

decreasing with increase of the magnetic parameter.    
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Figs. 8- 14 provide the graphically illustrations for the velocity for flow due to sinusoidal pressure gradient. 

Qualitatively, the observations for sinusoidal pressure gradient flow are similar to that of constant pressure 

gradient flow. However, the velocity profile in flow of constant and sinusoidal pressure gradient are not similar 

quantitatively.  

Fig. 15 demonstrate the velocity changes with time at given points (y=1 and y=2) for Panel (a) 0  and 

Panel (b) 5.0 for two types of flows. Comparison shows that the velocity profile in sinusoidal pressure 

gradient flow are larger when compared to those of constant pressure gradient flow. The effects of the slip 

coefficient and magnetic field are the similar on the both flows.           

              
Fig. 1. The velocity for different value of  when keeping other parameters fixed a) 0  b) 5.0 (Constant 

p. g.) 

 

                    
Fig. 2. The velocity for different value of  when keeping other parameters fixed  a) 0  b) 5.0 (Constant 

p. g.) 

 

                       
Fig. 3. The velocity for different value of 

1 when keeping other parameters fixed a) 0  b) 5.0 (Constant 

p. g.) 
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Fig. 4. The velocity for different value of 

3 when keeping other parameters fixed a) 0  b) 5.0 (Constant 

p. g.) 

 

                
Fig. 5. The velocity for different value of 

2 when keeping other parameters fixed a) 0  b) 5.0 (Constant 

p. g.) 

 

         
Fig. 6. The velocity for different value of M when keeping other parameters fixed a) 0  b) 5.0 (Constant 

p. g.) 

 

               
Fig. 7. The velocity for different value of  when keeping other parameters fixed a) 0M  b) 5.4M   

(Constant p. g.) 
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Fig. 8. The velocity for different value of  when keeping other parameters fixed a) 0  b) 5.0 ( 

Sinusoidal p. g.) 

 

            
Fig. 9. The velocity for different value of  when keeping other parameters fixed a) 0  b) 5.0 ( 

Sinusoidal p. g.) 

 

             
Fig. 10. The velocity for different value of 

1 when keeping other parameters fixed a) 0  b) 5.0 ( 

Sinusoidal p. g.) 

 

                 
Fig. 11. The velocity for different value of 

3 when keeping other parameters fixed a) 0  b) 5.0 ( 

Sinusoidal p. g.) 
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Fig. 12. The velocity for different value of 

2 when keeping other parameters fixed a) 0  b) 5.0 ( 

Sinusoidal p. g.) 

 

               
Fig. 13. The velocity for different value of M when keeping other parameters fixed a) 0  b) 5.0 ( 

Sinusoidal p. g.) 

 

                  
Fig. 14. The velocity for different value of  when keeping other parameters fixed a) 0M  b) 5.4M   ( 

Sinusoidal p. g.) 

 

              
Fig. 15. The velocity for different value of y when keeping other parameters fixed a) 0  b) 5.0 ( Constant 

P. & Sinusoidal P.) 
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